Skip to content

Types

OnlinePortfolioSelection.EGA Type
julia
EGA{T<:AbstractFloat}<:EGMFramework

EGA variant of the EGM algorithm.

Fields

  • gamma1::T: momentum parameter

  • gamma2::T: momentum parameter

Example

julia
julia> model = EGA(0.99, 0.)
EGA{Float64}(0.99, 0.0)

source

OnlinePortfolioSelection.EGE Type
julia
EGE{T<:AbstractFloat}<:EGMFramework

EGE variant of the EGM algorithm.

Fields

  • gamma1::T: momentum parameter

Example

julia
julia> model = EGE(0.99)
EGE{Float64}(0.99)

source

OnlinePortfolioSelection.EGR Type
julia
EGR{T<:AbstractFloat}<:EGMFramework

EGR variant of the EGM algorithm.

Fields

  • gamma2::T: momentum parameter

Example

julia
julia> model = EGR(0.)
EGR{Float64}(0.0)

source

OnlinePortfolioSelection.EMA Type
julia
EMA{T<:AbstractFloat}<:TrendRep

Exponential Moving Average trend representation. Formula:

x^E,t+1(ϑ)=k=0t1(1ϑ)kϑptk+(1ϑ)tp0pt

Fields

  • v::T: Smoothing factor.

Examples

julia
julia> using OnlinePortfolioSelection

julia> ema = EMA(0.5)
EMA{Float64}(0.5)

source

OnlinePortfolioSelection.KMDLOG Type
julia
KMDLOG<:ClusLogVariant

KMDLOG is a concrete type used to represent the KMDLOG Model. Also, see KMNLOG.

source

OnlinePortfolioSelection.KMNLOG Type
julia
KMNLOG<:ClusLogVariant

KMNLOG is a concrete type used to represent the KMNLOG Model. Also, see KMDLOG.

source

OnlinePortfolioSelection.OPSAlgorithm Type
julia
OPSAlgorithm{T<:AbstractFloat}

An object that contains the result of running the algorithm.

Fields

  • n_asset::Int: Number of assets in the portfolio.

  • b::Matrix{T}: Weights of the created portfolios.

  • alg::String: Name of the algorithm.

source

OnlinePortfolioSelection.OPSMetrics Type
julia
OPSMetrics{T<:AbstractFloat}

A struct to store the metrics of the OPS algorithm. This object is returned by the opsmetrics function.

Fields

  • Sn::Vector{T}: The cumulative wealth of investment during the investment period.

  • MER::T: The investments's Mean excess return (MER).

  • IR::T: The Information Ratio (IR) of portfolio for the investment period.

  • APY::T: The Annual Percentage Yield (APY) of investment.

  • Ann_Std::T: The Annualized Standard Deviation (σₚ) of investment.

  • Ann_Sharpe::T: The Annualized Sharpe Ratio (SR) of investment.

  • MDD::T: The Maximum Drawdown (MDD) of investment.

  • Calmar::T: The Calmar Ratio of investment.

  • AT::T: The Average Turnover (AT) of the investment.

source

OnlinePortfolioSelection.PAMR Type
julia
PAMR<: PAMRModel

Create a PAMR object. Also, see PAMR1, and PAMR2.

Example

julia
model = PAMR()

source

OnlinePortfolioSelection.PAMR1 Type
julia
PAMR1{T<:AbstractFloat}<: PAMRModel

Create a PAMR1 object. Also, see PAMR, and PAMR2.

Keyword Arguments

  • C::AbstractFloat=1.: Aggressiveness parameter.

Example

julia
model = PAMR1(C=0.02)

source

OnlinePortfolioSelection.PAMR2 Type
julia
PAMR2{T<:AbstractFloat}<: PAMRModel

Create a PAMR2 object. Also, see PAMR, and PAMR1.

Keyword Arguments

  • C::AbstractFloat=1.: Aggressiveness parameter.

Example

julia
model = PAMR2(C=0.02)

source

OnlinePortfolioSelection.PP Type
julia
PP<:TrendRep

Pick Price trend representation. Formula:

x^M,t+1(w)=max0kw1ptk(i)pt,i=1,2,,d

Examples

julia
julia> using OnlinePortfolioSelection

julia> pp = PP()
PP()

source

OnlinePortfolioSelection.SMAP Type
julia
SMAP<:TrendRep

Simple Moving Average trend representation using the close prices. Formula:

x^S,t+1(w)=k=0w1ptkwpt

Examples

julia
julia> using OnlinePortfolioSelection

julia> sma = SMAP()
SMA()

source

OnlinePortfolioSelection.SMAR Type

SMAR<:TrendRep

Simple Moving Average trend representation using the relative prices. Formula:

1+1xt++1k=0w2xtk

Examples

julia
julia> using OnlinePortfolioSelection

julia> sma = SMAR()
SMAR()

source